Progress in complex phenotype prediction: the CAGI6 Polygenic Risk Score challenge

Sung Chun, PhD

Scientist

Boston Children's Hospital, Harvard Medical School

October 25, 2022

Complex phenotypes

Complex phenotypes

Complex phenotype prediction

BLUP: Best Linear Unbiased Predictor (Random Effect Model)

- Infinitesimal model
- All SNPs are causal
- Genetic effects are random
- Predict the expected genetic effect

Charles Handerson (1911 – 1989)

Complex phenotype prediction

BLUP: Best Linear Unbiased Predictor (Random Effect Model)

٠

- Infinitesimal model
- All SNPs are causal
- Genetic effects are random
- Predict the expected genetic effect

Prediction of individual genetic risk to disease from genome-wide association studies

Naomi R. Wray, Michael E. Goddard and Peter M. Visscher

Genome Res. 2007 17: 1520-1528; originally published online Sep 4, 2007; Access the most recent version at doi:10.1101/gr.6665407

LETTERS

Common polygenic variation contributes to risk of schizophrenia and bipolar disorder

The International Schizophrenia Consortium*

Charles Handerson (1911 – 1989)

Phenotype prediction by thresholding on p-values of GWAS association statistics

Fixed Effect Model $y_{i} = \sum_{j} \beta_{j} \times x_{ij}$ $f = \int_{j} f f = \int_{j} \beta_{j} \times x_{ij}$ Genetic risk of Genotype of SNP *j* and individual *i* Effect size of SNP *j*

LETTERS

Common polygenic variation contributes to risk of schizophrenia and bipolar disorder

The International Schizophrenia Consortium³

Pruning and Thresholding

Polygenic Risk Scores (PRS)

- Summary statistics are easily available
- Many methods require a separate small individual level dataset to tune parameters
- Methods: BSLMM, LDPred, lassosum, PRScs, BayesR, MegaPRS, AnnoPred, NPS, etc

Extreme tails of PRS are highly predictive

Khera et al. 2018

CAGI6 Polygenic Risk Prediction challenge

- Evaluates the accuracy of statistical methods
- New area for CAGI
- Massive protected patient data for training/validation cohort
- Receive software submission
- Synthetic data to augment real data challenge

Phenotypes: Real and simulated traits

- Four Real phenotypes:
 - Breast Cancer
 - Early-onset Coronary Artery Disease
 - Inflammatory Bowel Disease (IBD)
 - Type 2 Diabetes
- 30 Simulated phenotypes (optional challenge)

Source: Chun and Imakaev et al. AJHG 2020

Datasets: Simulated phenotypes

Source: Chun and Imakaev et al. AJHG 2020

Datasets: Real phenotypes

Datasets: Real phenotypes

Training on UK Biobank data was handled centrally via software submission. UK Biobank data are not directly shared with participants.

Datasets: Real phenotypes

Training on UK Biobank data was handled centrally via software submission. UK Biobank data are not directly shared with participants.

Validation Cohort: MGB Biobank

MDPI

Article Building the Partners HealthCare Biobank at Partners Personalized Medicine: Informed Consent, Return of Research Results, Recruitment Lessons and Operational Considerations

Elizabeth W. Karlson ^{1,*}, Natalie T. Boutin ², Alison G. Hoffnagle ³ and Nicole L. Allen ¹

Sample sizes:

- 16,839 Whites
- 1,100 African Americans
- 403 Asians

Overview of submissions

Team 1	 Applied an AI technique Incorporate covariates directly into the model	Software submission (Pre-trained)
Team 2	 Applied MegaPRS 	Per-SNP effect sizes
Team 3	 Aggressively using variant annotations Based on LD Pruning + Thresholding technique 	Software submission (Training requested)
Team 4	 A sparse lasso regression technique 	Software submission (Pre-trained)
Team 5	 Multiple published PRS methods 	Per-SNP effect sizes

Evaluation metrics

Logistic regression of:

 $y \sim age + sex + PC1 + PC2 + PC3 + \dots + PC10 + PRS$

• AUC of the full model including PRS and covariates

Primary metric

- $R^{2}_{nagelkerke}$: the likelihood of data under the full model compared to the likelihood under the null model
- 5% Tail Odds Ratio (OR): The odd at top 5% of the score relative to the odd of the rest of distribution (covariates included)

 $\frac{\#\{y = 1 \land \hat{y} > q_{0.95}\}}{\#\{y = 0 \land \hat{y} > q_{0.95}\}} / \frac{\#\{y = 1 \land \hat{y} < q_{0.95}\}}{\#\{y = 0 \land \hat{y} < q_{0.95}\}}$

Methods for baseline comparison

- Negative control:
 - Logistic regression with only covariates (no PRS)

 $y \sim age + sex + PC1 + PC2 + PC3 + \dots + PC10$

- 4 widely used or current state-of-the-art methods:
 - LD Pruning + Thresholding (P+T)
 - LDPred v1
 - PRS-cs
 - NPS

Prediction accuracy (R²nagelkerke)

Breast Cancer			IBD			Coronary Artery Disease			Type 2 Diabetes		
Model	R ² nagelkerke	Rank	Model	R ² _{nagelkerke}	Rank	Model	R ² nagelkerke	Rank	Model	R ² nagelkerke	Rank
NPS	0.111	-	MegaPRS	0.173	1	PRScs	0.160	-	NPS	0.130	-
PRScs	0.109	-	NPS	0.157	-	NPS	0.160	-	PRScs	0.130	-
MegaPRS	0.101	1	PRScs	0.157	-	P+T	0.155	-	MegaPRS	0.127	1
Team 2-1	0.100	2	Team 2-1	0.156	2	MegaPRS	0.155	1	Team 5-A	0.118	2
Team 5-C	0.093	3	Team 5-A	0.148	3	Team 3-4	0.154	2	LDPred 1	0.117	-
Team 5-L1	0.091	4	Team 5-L1	0.141	4	Team 5-L2	0.153	3	Team 5-C	0.117	3
Team 3-4	0.091	5	Team 5-L2	0.141	5	Team 5-C	0.153	4	Team 4-3	0.112	4
Team 5-A	0.090	6	P+T	0.140	-	Team 5-L2i	0.153	5	Team 5-L2	0.111	5
P+T	0.090	-	Team 5-C	0.139	6	Team 5-A	0.153	6	Team 5-L2i	0.107	6
Team 5-T	0.089	7	LDPred 1	0.134	-	I DPred 1	0.151	-	P+T	0.107	-
LDPred 1	0.088	-	Team 5-T	0.125	7	Team 3-3	0.151	7	Team 1	0.105	7
Team 4-3	0.087	8	Team 5-L2i	0.124	8	Team 3-2	0.130	8	Team 5-T	0.099	8
Team 3-3	0.085	9	Team 4-1	0.103	9	Team 5-Z	0.143	0	Team 4-1	0.099	9
Team 5-L2i	0.085	10	Team 4-3	0.103	10	Team 2.1	0.147	10	Team 3-4	0.098	10
Team 4-1	0.084	11	Team 1	0.102	11	Team 3-1	0.146	10	Team 2-2	0.095	10
Team 3-2	0.082	12	Team 4-2	0.099	12	Team 3-6	0.146	11	Team 5-5	0.095	11
Team 5-L2	0.074	13	Cov only	0.099	-	Team 3-5	0.146	12	Team 5-LL	0.095	12
Team 4-2	0.073	14	Team 3-5	0.098	13	Team 4-1	0.143	13	Team 3-2	0.095	13
Cov only	0.073	-	Team 3-4	0.098	14	Team 5-L1	0.143	14	Team 3-1	0.094	14
Team 3-5	0.072	15	Team 3-2	0.098	15	Team 4-2	0.142	15	Team 3-5	0.093	15
Team 3-6	0.072	16	Team 3-1	0.098	16	Team 4-3	0.142	16	Team 3-6	0.093	16
Team 3-1	0.072	17	Team 3-3	0.098	17	Team 1	0.142	17	Team 4-2	0.092	17
Team 1	n/a	-	Team 3-6	0.098	18	Cov only	0.142	-	Cov only	0.092	-

ROC of IBD PRS models

Prediction accuracy in simulated datasets

				Validation		
		% causal SNPs	Method	R ² _{Liability}	, 95% CI	
	Ps		P+T	0.074		
	000 I SN		LDPred 1	0.103		
nic	50,(usa	1%	PRS-CS	0.110		
,ge	cai		NPS	0.123		
ol⁄			MegaPRS	0.145*	[0.143 - 0.147]	
<u>م</u>			P+T	0.199		
	C N ³	0.1%	LDPred 1	0.115		
	,000 al S		PRS-CS	0.224		
	5 aus		NPS	0.256		
	0		MegaPRS	0.297*	[0.292 - 0.302]	
Se			P+T	0.307		
pai	NPs	0.01%	LDPred 1	0.219		
S	500 al S		PRS-CS	0.327		
	ans		NPS	0.463		
			MegaPRS	0.460	[0.453 - 0.467]	

Poor transferability across populations

Conclusions

- We would not have an improvement over the existing state-of-theart methods for any of the phenotypes.
 - Looks like we do!
- Investment in the statistics does not pay off any longer.
 - Looks like it still does!

CAGI6 PRS challenge: Limitations

- Technically difficult challenge 22 groups signed up initially; only 5 groups made submission
- Bringing experts into CAGI need to demonstrate a clear benefit of participating
- Bringing new computational biology groups into the field help getting over the hurdle of training data access

CAGI6 PRS challenge: Limitations

- A machine learning-based prediction model did not perform well

 not designed to evaluate the full potential
- Need a mechanism to share training cohorts more easily and make more covariates available
- Need to include more diverse ancestry

Acknowledgements

- Co-assessor/data provider: Shamil Sunyaev (Harvard/BWH)
- Data provider: Nikolaos Patsopoulos (Harvard/BWH)
- Data provider: Benjamin Neale (Broad Institute)
- CAGI organizer: Constantina Bakolitsa (UC Berkeley)
- CAGI organizer: Predrag Radivojac (Northeastern University)

We would like thank all CAGI6 PRS challenge participants.

This research has been conducted using the UK Biobank Resource under Application Number 31063.

We are looking for postdocs.