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Complex phenotypes

Inheritance at each Phenotype is additive
locus is Mendelian. Loci over locus effects ->
are independent normal distribution
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Complex phenotypes
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Complex phenotype prediction

BLUP: Best Linear Unbiased Predictor
(Random Effect Model)

Infinitesimal model
All SNPs are causal
Genetic effects are random

Predict the expected genetic
effect

Charles Handerson
(1911 — 1989)



Complex phenotype prediction

BLUP: Best Linear Unbiased Predictor

ENOME
(Random Effect Model) (?RFSEARCH

* Infinitesimal model
Prediction of individual genetic risk to disease from genome-wide
«  All SNPs are causal association studies g

. GenetIC effeCtS are randOm Naomi R. Wray, Michael E. Goddard and Peter M. Visscher

* Predict the expected genetic
effect

Genome Res. 2007 17: 1520-1528; originally published online Sep 4, 2007;
Access the most recent version at doi:10.1101/gr.6665407
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Phenotype prediction by thresholding on
p-values of GWAS association statistics
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Polygenic Risk Scores (PRS)

Summary statistics are easily available

Many methods require a separate small individual level dataset to tune
parameters

Methods: BSLMM, LDPred, lassosum, PRScs, BayesR, MegaPRS, AnnoPred,
NPS, etc



Extreme tails of PRS are highly predictive
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CAGI6 Polygenic Risk Prediction challenge

« Evaluates the accuracy of statistical methods

New area for CAGI

Massive protected patient data for training/validation cohort

Receive software submission

Synthetic data to augment real data challenge



Phenotypes: Real and simulated traits

* Four Real phenotypes:
* Breast Cancer
* Early-onset Coronary Artery Disease
* Inflammatory Bowel Disease (IBD)
* Type 2 Diabetes

e 30 Simulated phenotypes (optional challenge)

Source: Chun and Imakaev et al. AJHG 2020



Datasets: Simulated phenotypes

Inputs:
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Training cohort:
N=2,500/2,500

Validation cohort:
N=50,000
individual
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summary statistics individual
genotypes

disease outcomes
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Source: Chun and Imakaev et al. AJHG 2020



Datasets: Real phenotypes

~

GWAS

summary statistics
(public)
N=~35,000 -
330,000




Datasets: Real phenotypes

Training cohort from UK Biobank (N)

Case Control

GWAS

Breast cancer 3,956 3,956

summary statistics
(public)

N=~35,000 - IBD 2,483 2,483

330,000
%%%% CAD 2,000 2,000

\ Type 2 Diabetes 7,298 7,298

Training on UK Biobank data was handled centrally via software submission.
UK Biobank data are not directly shared with participants.




Datasets: Real phenotypes
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Validation cohort:
MGB Biobank
(access controlled)
N=~7,800-16,000
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Training on UK Biobank data was handled centrally via software submission.
UK Biobank data are not directly shared with participants.
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Validation Cohort: MGB Biobank
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Team5 Team4 Team3 Team2 Teaml

Overview of submissions

Applied an Al technique
Incorporate covariates directly into the model

Applied MegaPRS

Aggressively using variant annotations
Based on LD Pruning + Thresholding technique

A sparse lasso regression technique

Multiple published PRS methods

Software submission
(Pre-trained)

Per-SNP effect sizes

Software submission
(Training requested)

Software submission
(Pre-trained)

Per-SNP effect sizes



Evaluation metrics

Logistic regression of:

y ~age +sex + PC1+ PC2+ PC3 + -+ PC10 + PRS

AUC of the full model including PRS and covariates
Primary metric

R agelkerke : the likelihood of data under the full model compared to the
likelihood under the null model

5% Tail Odds Ratio (OR): The odd at top 5% of the score relative to the odd of
the rest of distribution (covariates included)

#Hy =1A9 > qoos} , #Hy =1AP < qoos}
#Hy=0A9>qoos} #ly=0AP < qoos}




Methods for baseline comparison

* Negative control:
* Logistic regression with only covariates (no PRS)

y~age + sex + PCl1+ PC2+ PC3 + ---+ PC10

* 4 widely used or current state-of-the-art methods:
* LD Pruning + Thresholding (P+T)
* LDPred vl
* PRS-cs
* NPS



Prediction accuracy (R?,, eierke)

Breast Cancer IBD Coronary Artery Disease Type 2 Diabetes
Model R pagekerke  RANK Model R pagekerke  RANK Model R pagekerke  RANK Model R pogekerke  RANK
NPS 0.111 - MegaPRS 0.173 1 PRScs 0.160 - NPS 0.130 -
PRScs 0.109 - NPS 0.157 . NPS 0.160 - PRScs 0.130 .
MegaPRS 0.101 1 PRScs 0.157 - P+T 0.155 - MegaPRS 0.127 1
Team 2-1 0.100 2 Team 2-1 0.156 2 MegaPRS 0.155 1 Team 5-A 0.118 2
Team 5-C 0.093 3 Team 5-A 0.148 3 Team 3-4 0.154 2 LDPred 1 0.117 -
Team 5-L1 0.091 4 Team 5-L1 0.141 4 Team 5-12 0.153 3 Team 5-C 0.117 3
Team 3‘4 0.091 S Team 5'L2 0141 5 Team S_C 0.153 4 Team 4_3 0_112 4
Team 5-A 0.090 6 P+T 0.140 - Team 5-L2i 0.153 5 Team 5-12 0.111 5
TamsT | ocss | preds | o134 |- fansA | 0153 | 6 Tam$2) | 0107 | 6
eam o5- K re . -
LDPred 1 0.151 - P+T 0.107 -
LDPred 1 0.088 - Team 5-T 0.125 7 Team 3-3 0.150 J Team 1 0.105 7
Tamss | oo s Teamai | o108 s Tem32 0148 8 TamsT 0099 8
: - ' - Team 4-1 0.099 9
Team 5-L2i 0085 10 Team 4-3 0103 10 JeamS-T S187 : eam
Team 4-1 0.084 1 Team 1 0.102 T Team 3-1 0.146 10 Team 3-4 0.098 10
Team 3-2 0.082 12 Team 4-2 0.099 12 L_ba 0186 | i1 Team 3-3 0095 | 1
Team 5-12 0.074 13 Covonly 0.099 - Team 3-5 0.146 12 JeamS-L1 0095 | 12
Team 4-2 0073 14 Team 3-5 0098 13 Team 4-1 0.143 13 Team 3-2 0.095 13
Cov only 0.073 . Team 3-4 0.098 14 Team 5-L1 0143 14 Jeam3-1 goos | 14
Team 3-5 0072 15 Team 3-2 0.098 15 Team 4-2 0.142 15 Team 3-5 0.093 15
Team 3-6 0.072 16 Team 3-1 0.098 16 Team 4-3 0.142 16 Team 3-6 0.093 16
Team 3-1 0.072 17 Team 3-3 0.098 17 Team 1 0.142 17 Team 4-2 0.092 17
Team 1 n/a - Team 3-6 0.098 18 Cov only 0.142 - Cov only 0.092 =




ROC of IBD PRS models
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Prediction accuracy in simulated datasets
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Poor transferability across populations
IBD in MGB Biobank Population
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Conclusions

« We would not have an improvement over the existing state-of-the-
art methods for any of the phenotypes.

* Looks like we do!

* Investment in the statistics does not pay off any longer.
» Looks like it still does!



CAGI6 PRS challenge: Limitations

 Technically difficult challenge — 22 groups signed up initially;
only 5 groups made submission

 Bringing experts into CAGI — need to demonstrate a clear
benefit of participating

 Bringing new computational biology groups into the field — help
getting over the hurdle of training data access



CAGI6 PRS challenge: Limitations

« A machine learning-based prediction model did not perform well
— not designed to evaluate the full potential

* Need a mechanism to share training cohorts more easily and
make more covariates available

* Need to include more diverse ancestry
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