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Complex phenotype prediction

BLUP: Best Linear Unbiased Predictor
(Random Effect Model)

Charles Handerson
(1911 – 1989)

• Infinitesimal model

• All SNPs are causal
• Genetic effects are random

• Predict the expected genetic 
effect
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LETTERS

Common polygenic variation contributes to risk of
schizophrenia and bipolar disorder
The International Schizophrenia Consortium*

Schizophrenia is a severe mental disorder with a lifetime risk of
about 1%, characterized by hallucinations, delusions and cognitive
deficits, with heritability estimated at up to 80%1,2. We performed a
genome-wide association study of 3,322 European individuals with
schizophrenia and 3,587 controls. Here we show, using two analytic
approaches, the extent to which common genetic variation underlies
the risk of schizophrenia. First, we implicate the major histocompati-
bility complex. Second, we provide molecular genetic evidence for a
substantial polygenic component to the risk of schizophrenia invol-
ving thousands of common alleles of very small effect. We show that
this component also contributes to the risk of bipolar disorder, but
not to several non-psychiatric diseases.

We genotyped the International Schizophrenia Consortium (ISC)
case-control sample for up to ,1 million single nucleotide poly-
morphisms (SNPs), augmented by imputed common HapMap
SNPs. In the genome-wide association study (GWAS; genomic con-
trol lGC 5 1.09; Supplementary Table 1 and Supplementary Figs
1–3), the most associated genotyped SNP (P 5 3.4 3 1027) was
located in the first intron of myosin XVIIIB (MYO18B) on chro-
mosome 22. The second strongest association comprised more than
450 SNPs on chromosome 6p spanning the major histocompatibility
complex (MHC; Fig. 1). There is some evidence for between-site
heterogeneity in both allele frequencies and odds ratios (Table 1).
We observed associations consistent with previous reports in the
22q11.2 deletion region and ZNF804A (ref. 3) (Supplementary

Table 2, Supplementary Fig. 2 and section 5 and 6 in Supplemen-
tary Information).

The best imputed SNP, which reached genome-wide significance
(rs3130297, P 5 4.79 3 1028, T allele odds ratio 5 0.747, minor allele
frequency (MAF) 5 0.114, 32.3 megabases (Mb)), was also in the
MHC, 7 kilobases (kb) from NOTCH4, a gene with previously
reported associations with schizophrenia4. We imputed classical
human leukocyte antigen (HLA) alleles; six were significant at
P , 1023, found on the ancestral European haplotype5 (Table 1, Sup-
plementary Table 3 and section 3 in Supplementary Information).
However, it was not possible to ascribe the association to a specific
HLA allele, haplotype or region (Supplementary Table 3 and
Supplementary Fig. 4).

We exchanged GWAS summary results with the Molecular
Genetics of Schizophrenia (MGS) and SGENE consortia for geno-
typed SNPs with P , 1023. There were 8,008 cases and 19,077 controls
of European descent in the combined sample (see refs 6, 7 and section
7 in Supplementary Information). Our top genotyped MHC SNP
(rs3130375) had P 5 0.086 and P 5 0.14 in MGS and SGENE, respec-
tively. Considering the combined results for genotyped and imputed
SNPs across the MHC region more broadly, rs13194053 had a
genome-wide significant combined P 5 9.5 3 1029 (ISC, MGS and
SGENE: P 5 3 3 1024, 1 3 1022 and 1 3 1024, respectively; C allele

25.7 32.3
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Figure 1 | Association results across the MHC region. Results are shown as
–log10(P value) for genotyped SNPs. The most associated SNP is shown as a
blue diamond. The colour of the remaining markers reflects r2 with
rs3130375, light pink, r2 . 0.1, red, r2 . 0.8. The recombination rate from
the CEU HapMap (second y axis) is plotted in light blue.

Table 1 | MHC association for the most significant genotyped SNP
rs3130375

a MHC association for rs3130375 by sample

Frequency (rs3130375, A allele)

Sample Ancestry Cases Controls P value

University of Aberdeen Scottish 0.132 0.168 0.0060
University of Edinburgh Scottish 0.137 0.135 0.8930
University College London* British 0.132 0.143 0.4836
Trinity College Dublin Irish 0.110 0.170 0.0012
Cardiff University Bulgarian 0.077 0.084 0.5602
Portuguese Island Collection Portuguese 0.048 0.061 0.3510
Karolinska Institutet (5.0) Swedish 0.043 0.119 0.0004
Karolinska Institutet (6.0) Swedish 0.089 0.142 0.0040

b MHC association for classical HLA alleles with P , 1 3 1023

HLA allele Frequency{ Odds ratio P value

HLA-A*0101 0.103 0.785 4 3 1025

HLA-C*0701 0.113 0.778 5 3 1025

HLA-B*0801 0.068 0.757 3 3 1025

HLA-DRB*0301 0.121 0.768 3 3 1026

HLA-DQB*0201 0.210 0.857 4 3 1024

HLA-DQA*0501 0.205 0.798 6 3 1027

Total sample Cochran–Mantel–Haenszel P 5 4 3 1027; Breslow–Day heterogeneity test
P 5 0.012 (d.f. 5 6).
* SNP failed genotyping quality control in UCL. Allele frequency for UCL based on imputed
genotypes.
{ Frequency is estimated population frequency.

*Lists of authors and their affiliations appear at the end of the paper.
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Phenotype prediction by thresholding on 
p-values of GWAS association statistics

LETTERS

Common polygenic variation contributes to risk of
schizophrenia and bipolar disorder
The International Schizophrenia Consortium*

Schizophrenia is a severe mental disorder with a lifetime risk of
about 1%, characterized by hallucinations, delusions and cognitive
deficits, with heritability estimated at up to 80%1,2. We performed a
genome-wide association study of 3,322 European individuals with
schizophrenia and 3,587 controls. Here we show, using two analytic
approaches, the extent to which common genetic variation underlies
the risk of schizophrenia. First, we implicate the major histocompati-
bility complex. Second, we provide molecular genetic evidence for a
substantial polygenic component to the risk of schizophrenia invol-
ving thousands of common alleles of very small effect. We show that
this component also contributes to the risk of bipolar disorder, but
not to several non-psychiatric diseases.

We genotyped the International Schizophrenia Consortium (ISC)
case-control sample for up to ,1 million single nucleotide poly-
morphisms (SNPs), augmented by imputed common HapMap
SNPs. In the genome-wide association study (GWAS; genomic con-
trol lGC 5 1.09; Supplementary Table 1 and Supplementary Figs
1–3), the most associated genotyped SNP (P 5 3.4 3 1027) was
located in the first intron of myosin XVIIIB (MYO18B) on chro-
mosome 22. The second strongest association comprised more than
450 SNPs on chromosome 6p spanning the major histocompatibility
complex (MHC; Fig. 1). There is some evidence for between-site
heterogeneity in both allele frequencies and odds ratios (Table 1).
We observed associations consistent with previous reports in the
22q11.2 deletion region and ZNF804A (ref. 3) (Supplementary

Table 2, Supplementary Fig. 2 and section 5 and 6 in Supplemen-
tary Information).

The best imputed SNP, which reached genome-wide significance
(rs3130297, P 5 4.79 3 1028, T allele odds ratio 5 0.747, minor allele
frequency (MAF) 5 0.114, 32.3 megabases (Mb)), was also in the
MHC, 7 kilobases (kb) from NOTCH4, a gene with previously
reported associations with schizophrenia4. We imputed classical
human leukocyte antigen (HLA) alleles; six were significant at
P , 1023, found on the ancestral European haplotype5 (Table 1, Sup-
plementary Table 3 and section 3 in Supplementary Information).
However, it was not possible to ascribe the association to a specific
HLA allele, haplotype or region (Supplementary Table 3 and
Supplementary Fig. 4).

We exchanged GWAS summary results with the Molecular
Genetics of Schizophrenia (MGS) and SGENE consortia for geno-
typed SNPs with P , 1023. There were 8,008 cases and 19,077 controls
of European descent in the combined sample (see refs 6, 7 and section
7 in Supplementary Information). Our top genotyped MHC SNP
(rs3130375) had P 5 0.086 and P 5 0.14 in MGS and SGENE, respec-
tively. Considering the combined results for genotyped and imputed
SNPs across the MHC region more broadly, rs13194053 had a
genome-wide significant combined P 5 9.5 3 1029 (ISC, MGS and
SGENE: P 5 3 3 1024, 1 3 1022 and 1 3 1024, respectively; C allele
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Figure 1 | Association results across the MHC region. Results are shown as
–log10(P value) for genotyped SNPs. The most associated SNP is shown as a
blue diamond. The colour of the remaining markers reflects r2 with
rs3130375, light pink, r2 . 0.1, red, r2 . 0.8. The recombination rate from
the CEU HapMap (second y axis) is plotted in light blue.

Table 1 | MHC association for the most significant genotyped SNP
rs3130375

a MHC association for rs3130375 by sample

Frequency (rs3130375, A allele)

Sample Ancestry Cases Controls P value

University of Aberdeen Scottish 0.132 0.168 0.0060
University of Edinburgh Scottish 0.137 0.135 0.8930
University College London* British 0.132 0.143 0.4836
Trinity College Dublin Irish 0.110 0.170 0.0012
Cardiff University Bulgarian 0.077 0.084 0.5602
Portuguese Island Collection Portuguese 0.048 0.061 0.3510
Karolinska Institutet (5.0) Swedish 0.043 0.119 0.0004
Karolinska Institutet (6.0) Swedish 0.089 0.142 0.0040

b MHC association for classical HLA alleles with P , 1 3 1023

HLA allele Frequency{ Odds ratio P value

HLA-A*0101 0.103 0.785 4 3 1025

HLA-C*0701 0.113 0.778 5 3 1025

HLA-B*0801 0.068 0.757 3 3 1025

HLA-DRB*0301 0.121 0.768 3 3 1026

HLA-DQB*0201 0.210 0.857 4 3 1024

HLA-DQA*0501 0.205 0.798 6 3 1027

Total sample Cochran–Mantel–Haenszel P 5 4 3 1027; Breslow–Day heterogeneity test
P 5 0.012 (d.f. 5 6).
* SNP failed genotyping quality control in UCL. Allele frequency for UCL based on imputed
genotypes.
{ Frequency is estimated population frequency.

*Lists of authors and their affiliations appear at the end of the paper.
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Polygenic Risk Scores (PRS)

• Summary statistics are easily available

• Many methods require a separate small individual level dataset to tune 
parameters

• Methods: BSLMM, LDPred, lassosum, PRScs, BayesR, MegaPRS, AnnoPred, 
NPS, etc



Extreme tails of PRS are highly predictive

Khera et al. 2018

LETTERSNATURE GENETICS

traditional analytic strategy for monogenic mutations, we defined 
‘carriers’ as individuals with GPSCAD above a given threshold and 
‘non-carriers’ as all others.

We found that 8% of the population had inherited a genetic  
predisposition that conferred ≥  threefold increased risk for CAD 
(Table 2). Strikingly, the polygenic score identified 20-fold more 
people at comparable or greater risk than were found by familial 
hypercholesterolemia mutations in previous studies6,7. Moreover, 
2.3% of the population (‘carriers’) had inherited ≥  fourfold 
increased risk for CAD and 0.5% (‘carriers’) had inherited ≥  five-
fold increased risk. GPSCAD performed substantially better than 
two previously published polygenic scores for CAD that included 
50 and 49,310 variants, respectively (Supplementary Table 7 and 
Supplementary Fig. 1)17,18.

GPSCAD has the advantage that it can be assessed from the time 
of birth, well before the discriminative capacity emerges for the risk 
factors (for example, hypertension or type 2 diabetes) used in clini-
cal practice to predict CAD. Moreover, even for our middle-aged 
study population, practising clinicians could not identify the 8% of 
individuals at ≥  threefold risk based on GPSCAD using conventional 
risk factors in the absence of genotype information (Supplementary 
Table 8). For example, conventional risk factors such as hypercholes-
terolemia were present in 20% of those with ≥  threefold risk based 
on GPSCAD versus 13% of those in the remainder of the distribution. 
Hypertension was present in 32 versus 28%, and a family history 
of heart disease was present in 44 versus 35%, respectively. Making 
high GPSCAD individuals aware of their inherited susceptibility may 
facilitate intensive prevention efforts. For example, we previously 
showed that a high polygenic risk for CAD may be offset by one of 
two interventions: adherence to a healthy lifestyle or cholesterol-
lowering therapy with statin medications19–21.

Our results for CAD generalized to the four other diseases: 
risk increased sharply in the right tail of the GPS distribution 
(Fig. 3). For each disease, the shape of the observed risk gradi-
ent was consistent with predicted risk based only on the GPS 
(Supplementary Figs. 2 and 3).

Atrial fibrillation is an underdiagnosed and often asymptomatic 
disorder in which an irregular heart rhythm predisposes to blood 
clots and is a leading cause of ischemic stroke22. The polygenic  
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Fig. 2 | Risk for CAD according to GPS. a, Distribution of GPSCAD in the UK Biobank testing dataset (n!= !288,978). The x!axis represents GPSCAD, with values 
scaled to a mean of 0 and a standard deviation of 1 to facilitate interpretation. Shading reflects the proportion of the population with three-, four-, and 
fivefold increased risk versus the remainder of the population. The odds ratio was assessed in a logistic regression model adjusted for age, sex, genotyping 
array, and the first four principal components of ancestry. b, GPSCAD percentile among CAD cases versus controls in the UK Biobank testing dataset.  
Within each boxplot, the horizontal lines reflect the median, the top and bottom of each box reflect the interquartile range, and the whiskers reflect 
the maximum and minimum values within each grouping. c, Prevalence of CAD according to 100 groups of the testing dataset binned according to the 
percentile of the GPSCAD.

Table 2 | Proportion of the population at three-, four- and 
fivefold increased risk for each of the five common diseases

High GPS definition Individuals in testing 
dataset (n)

% of individuals

Odds ratio ≥3.0
 CAD 23,119/288,978 8.0

 Atrial fibrillation 17,627/288,978 6.1
 Type 2 diabetes 10,099 288,978 3.5

 Inflammatory bowel 
disease

9,209 288,978 3.2

 Breast cancer 2,369/157,895 1.5
 Any of the five diseases 57,115/288,978 19.8
Odds ratio ≥4.0

 CAD 6,631/288,978 2.3
 Atrial fibrillation 4,335/288,978 1.5
 Type 2 diabetes 578/288,978 0.2
 Inflammatory bowel 
disease

2,297/288,978 0.8

 Breast cancer 474/157,895 0.3
 Any of the five diseases 14,029/288,978 4.9
Odds ratio ≥5.0

 CAD 1,443/288,978 0.5
 Atrial fibrillation 2,020 288,978 0.7
 Type 2 diabetes 144/288,978 0.05
 Inflammatory bowel 
disease

571/288,978 0.2

 Breast cancer 158/157,895 0.1

 Any of the five diseases 4,305/288,978 1.5

For each disease, progressively more extreme tails of the GPS distribution were compared with the 
remainder of the population in a logistic regression model with disease status as the outcome, and 
age, sex, the first four principal components of ancestry, and genotyping array as predictors. The 
breast cancer analysis was restricted to female participants.

NATURE GENETICS | VOL 50 | SEPTEMBER 2018 | 1219–1224 | www.nature.com/naturegenetics 1221
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CAGI6 Polygenic Risk Prediction challenge
• Evaluates the accuracy of statistical methods

• New area for CAGI

• Massive protected patient data for training/validation cohort 

• Receive software submission

• Synthetic data to augment real data challenge



Phenotypes: Real and simulated traits

• Four Real phenotypes:
• Breast Cancer
• Early-onset Coronary Artery Disease
• Inflammatory Bowel Disease (IBD)
• Type 2 Diabetes

• 30 Simulated phenotypes (optional challenge)

Source: Chun and Imakaev et al. AJHG 2020



Datasets: Simulated phenotypes

GWAS
summary statistics

N=100,000

Training cohort:
N=2,500/2,500

individual 
genotypes

disease outcomes

Validation cohort:
N=50,000
individual 
genotypes

Inputs:
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disease outcomes
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Source: Chun and Imakaev et al. AJHG 2020



Datasets: Real phenotypes

GWAS
summary statistics

(public)
N=~35,000 - 

330,000

Inputs:



Datasets: Real phenotypes

GWAS
summary statistics

(public)
N=~35,000 - 

330,000

Training cohort:
UK Biobank

(access controlled)
N=~2,400/2,400  - 

7,200/7,200

Inputs:

Covariates:
age, sex, 3 genetic 

PCs

Available SNP info

Training on UK Biobank data was handled centrally via software submission.
UK Biobank data are not directly shared with participants.

Breast cancer
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CAD

Type 2 Diabetes

Case Control
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7,298 7,298

Training cohort from UK Biobank (N)



Datasets: Real phenotypes

GWAS
summary statistics

(public)
N=~35,000 - 

330,000

Training cohort:
UK Biobank

(access controlled)
N=~2,400/2,400  - 

7,200/7,200

Validation cohort:
MGB Biobank 

(access controlled)
N=~7,800-16,000

Validation cohort:
disease outcomes

Pr
ed

ict

Covariates:
age, sex, 3 genetic 

PCs

Available SNP info

Available SNP info

Training on UK Biobank data was handled centrally via software submission.
UK Biobank data are not directly shared with participants.

PRS model / 
Software

Inputs:



Genetic ancestry PC1
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Validation Cohort: MGB Biobank

Sample sizes:

• 16,839 Whites

• 1,100 African Americans

• 403 Asians



Overview of submissions
• Applied an AI technique 
• Incorporate covariates directly into the model 

 
 

• Applied MegaPRS

 
• Aggressively using variant annotations 
• Based on LD Pruning + Thresholding technique  

• A sparse lasso regression technique

• Multiple published PRS methods
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Per-SNP effect sizes

Software submission
(Training requested)

Software submission
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Per-SNP effect sizes



Primary metric

Evaluation metrics

• AUC of the full model including PRS and covariates

• R2nagelkerke : the likelihood of data under the full model compared to the 
likelihood under the null model

• 5% Tail Odds Ratio (OR): The odd at top 5% of the score relative to the odd of 
the rest of distribution (covariates included)

%	~	()* + ,*- + ./1 + ./2 + ./3 + ⋯+ ./10 + .56
Logistic regression of:

# " = 1⋀ &" >	)!.#$
# " = 0	⋀	 &"	> )!.#$

/ # " = 1⋀ &" <	)!.#$
# " = 0	⋀	 &"	< 	)!.#$



Methods for baseline comparison

• Negative control: 
• Logistic regression with only covariates (no PRS)

• 4 widely used or current state-of-the-art methods: 
• LD Pruning + Thresholding (P+T)
• LDPred v1
• PRS-cs
• NPS

%	~	()* + ,*- + ./1 + ./2 + ./3 + ⋯+ ./10



Breast Cancer IBD Coronary Artery Disease Type 2 Diabetes

Prediction accuracy (R2
nagelkerke)



ROC of IBD PRS models
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Poor transferability across populations
IBD in MGB Biobank

White

Black

Case Control

820 16,335

26 1,100

Sample size in MGB Biobank



• We would not have an improvement over the existing state-of-the-
art methods for any of the phenotypes.

• Looks like we do!

• Investment in the statistics does not pay off any longer. 
• Looks like it still does!

Conclusions



• Technically difficult challenge – 22 groups signed up initially; 
only 5 groups made submission

• Bringing experts into CAGI – need to demonstrate a clear 
benefit of participating

• Bringing new computational biology groups into the field – help 
getting over the hurdle of training data access

CAGI6 PRS challenge: Limitations



CAGI6 PRS challenge: Limitations
• A machine learning-based prediction model did not perform well 

– not designed to evaluate the full potential

• Need a mechanism to share training cohorts more easily and 
make more covariates available

• Need to include more diverse ancestry
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We are looking for postdocs.
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